

Novel β -carboline indole alkaloids from the leaves of *Tabernaemontana elegans*

iMed.UL

Institute for Medicines and

Pharmaceutical Sciences

Mansoor TA¹, Ramalhete C¹, MoInr J², Mulhovo S³, Ferreria MJU¹

¹iMed-UL, Faculdade de Farmcia, Universidade de Lisboa, Av. D. Foras Armadas, 1600 – 083 Lisboa, Portugal; ²Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Hungary; ³Instituto Superior Politcnico de Gaza (ISPG), Chokwe, Mozambique

TEAF1.3.17-3-3-3-

50

ABSTRACT

We have isolated three β -carboline indole alkaloids (1-3) from the MeOH extract of the leaves of *Tabernaemontana elegans*. The chemical structures of these novel entities were established by means of spectroscopic techniques including 2D NMR spectroscopic experiments. The new skeletal features of compounds 1 and 2 were the presence of a two-carbon unit, attached to a structurally related β -carboline skeleton, resulting in the formation of additional six and seven-membered new rings in 1 and 2, respectively. To the best of our knowledge, it appears to be the first report on the isolation of β -carboline indole alkaloids from the genus Tabernaemontana. Compounds 1-3 were evaluated for their potential P-glycoprotein modulating properties using the rhodamine-123 assay, in both MDR1-gene transfected and parental mouse lymphoma cell lines. Compounds 1 and 3 exhibited a weak activity.

RESULTS AND DISCUSSION

The genus *Tabernaemontana* (Apocynaceae) has a wide distribution and plants belonging to this genus are used in traditional medicine to treat cancer [1]. These plants are characterized to produce indole alkaloids of unusual structures as well as novel bioactivity. The new feature shared by β -carboline indole alkaloids **1–3** is the presence of a methyl group at C-5. Furthermore, compounds **1** and **2** contained an additional two-carbon unit (C-17 and C-18) at N-16, which is connected to N-4 in compund **1** and N-1 in compound **2**, to form an additional six and seven-membered rings, respectively. Therefore, the β -carbolines **1** and **2** can be considered as compounds with new skeletal features.

Compounds 1–3 were evaluated for their P-gp modulating properties on human MDR1 gene-transfected and parental L5178 mouse lymphoma cell lines, by flow cytometry, using the rhodamine-123 exclusion test. The results are summarized in Table. Their antiproliferative effects on these cell lines are also presented below. Compounds 1 and 3 displayed weak MDR reversal activity when tested at the highest concentration (FAR = 1.73 and 1.43, at 20 μ M, respectively). Small molecules are not Pgp modulators and the range of appropriate molecular weighs varies between 250 and 2000.²² Therefore, the low molecular weight of the compounds 1–3 (228 for 3 and 251 for compounds 1 and 2) may contribute for their lack of activity.

Compounds	Conc. (µM)	FSC ^a	SSC ^a	FL-1 ^a	FAR ^a
PAR ^b	-	443	185	972	-
PAR	-	443	175	891	-
MDR ^c	-	452	251	10.7	-
Verapamil	22.2	439	251	98.9	9.25
1	20	454	239	18.5	1.73
	2	450	244	7.7	0.72
2	20	458	243	10.7	0.99
	2	454	243	8.9	0.78
3	20	446	242	15.3	1.43
	2	460	232	8.4	0.79
DMSO	-	466	242	10.3	0.97
^a FSC: Forwar FL-1: Mean calculated by without MDR	rd scatter count of fluorescence int using the equat gene. ^o MDR: a pa	of cells in the samples; SSC: Side scatte ensity of the cells. FAR: fluorescenc tion given in the experimental section. arental cell line transfected with human	er count of e activity ^b PAR cor MDR1 gen	cells in the ratio: val atrol: a pa e.	e sample ues wer rental ce

Multidrug resistance reversal effects of **1-3**

Key HMBC and COSY correlations of **1** and **2**

The MeOH extract of *Tabernaemontana elegans* was extracted with dichloromethane and ethyl acetate solvents. The CH_2CI_2 and EtOAc soluble fractions were combined and subjected to further chromatographic procedures to isolate compounds **1**–**3**.

Compounds	PAR-L5178 * ID ₅₀ (μM)	MDR-L5178 * ID ₅₀ (μM)			
1	45.9 ±6.4	37.5 ±2.1			
2	46.6 ±9.2	39.7 ±0.7			
3	70.6 ±2.1	51.5 ±0.7			
*Parental (PAR) and Multidrug Resistance (MDR) Mouse Lymphoma Cells (L5178)					

CONCLUSION

Three novel β-carboline indole alkaloids (1–3) have been isolated from a MeOH extract of the leaves of *Tabernaemontana elegans* (Apocynaceae). To the best of our knowledge, this is the first report of β-carboline indole alkaloids from the genus *Tabernaemontana*. Compounds 1 and 3 exhibited a weak MDR activity in mouse lymphoma cell lines.

Acknowledgements: This study was supported by a fellowship from FCT, Portugal (reference number BPD/30492/2006).

References: [1] Graham, J. et al. (2000) J. Ethnopharm. 73:347 - 377.