

iMed.UL Institute for Medicines and **Pharmaceutical Sciences**

SCREENING FOR ANTIMALARIAL **ACTIVITY OF CRUDE EXTRACTS FROM AFRICAN MEDICINAL PLANTS**

<u>Ramalhete C¹, Lopes D², Mulhovo S³, Rosário V², Ferreira MJU¹</u>

¹iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. das Forças Armadas, 1600-083 Lisbon, Portugal; ²CMDT, Institute of Hygiene and Tropical Medicine, UNL, R. da Junqueira 96, 1349-008 Lisbon, Portugal; ³ Polytechnic Institute of Gaza (ISPG), Chokwe, Mozambique.

INTRODUCTION

Malaria a serious parasitic disease, spread by mosquitoes from Anopheles species, is still the most devastating in the world. It has been estimated that in the last 20

years mortality from malaria has doubled (it is currently 3 millions deaths annually), and a major factor responsible for this increase is the resistance of malaria parasites to antimalarial drugs.¹ Consequently, there is an urgent need to discover new and affordable antimalarials. Antimalarial drugs derived from plants appear to be promising therapeutic candidates as exemplified by artemisinin and quinine, two of the most effective drugs against *Plasmodium falciparum*. In Africa, up to 80% of the population use traditional medicines for primary health care.² However, few scientific data are available to validate the antimalarial properties of medicinal plants.

The aim of this study was to carry out a scientific evaluation of the claimed antimalarial properties of plants used in traditional medicine against malaria and fever, in order to validate their use and to determine their potential as new sources of antimalarial drugs.

Figure 1- Some of the most active plants.

Figure 2- Anopheles gambiae.

RESULTS AND DISCUSSION

The antimalarial activity of fifty seven extracts, prepared by sequential extraction with solvents of increased polarity (hexane, dichloromethane, ethyl acetate and methanol) was evaluated against 3D7 P. falciparum strain. The experimental procedure is summarized in scheme 1.

As illustrated in Table 1, from the fifty seven extracts tested, two of them (4 %) showed a significant activity (IC50 < 5 mg/ml), 14 extracts (25%) showed moderate activity (10 <IC50 < 50 mg/ml), 20 (35 %) weak activity (50 <IC50 < 100 mg/ml) and 21 extracts (36%) were inactive (IC50 > 100 mg/ml).

A bioassay-guided fractionation of the most active extracts (Momordica balsamina L. and Pittosporum tobira W. T. Aiton.) is ongoing; several active compounds were already isolated.

Table 1- Antimalarial activity of crude extracts against *P. falciparum* 3D7.

Species	IC ₅₀ (μg/ml)				
	Family	Hexane Extract	CH ₂ Cl ₂ Extract	AcOEt Extract	MeOH Ectract
Acacia Karroo Hayne	Fabaceae	99	60	52	>100
Aloe parvibracteata Schonland	Aloaceae	>100	>100	>100	-
Bridelia cathartica Bertol. f.	Euphorbiaceae	99	>100	44	>100
Cassia abbreviata Oliv.	Fabaceae	>100	40	>100	>100
Cassia occidentalis L.	Fabaceae	36	60	48	88
Crossopteryx febriguga Benth	Rubiaceae	-	59	-	>100
Leonotis leonurus R. Br.	Lamiaceae	>100	61	31	>100
Momordica balsamina L.	Cucurbitaceae	>100	22	1	75±
Parkinsonia aculeata L.	Caesalpiniaceae	32	66	35	80
Pittosporum tobira W. T. Aiton	Pittosporaceae	28	57	5	>100
Plumbago auriculata Lam.	Plumbaginaceae	67	46	35	80
Schlefflera actinophylla Harms	Araliaceae	22	34	41	>100
Senna didymobotrya Fresen.	Fabaceae	64	92	99	75
Tabernaemontana elegans Strapt.	Apocynaceae	59	27	99	>100
Trichilia emetica Vahl	Meliaceae	>100	>100	>100	>100

Figure 3- Thick blood film of the *Pittosporum tobira* AcOEt extract demonstrating a significant decrease in schizonts with the increase of extract concentration (A- Controlo -; B- 1 µg/ml; C- 25 µg/ml; D- 100 μ g/ml). (oil immersion x 1000).

MATERIALS AND METHODS

Preparation of plant extracts: The air-dried powdered plant parts (roots, leaves, seeds, and bark) or whole plant were sequentially extracted, with hexane, dichloromethane (CH_2Cl_2), ethyl acetate (AcOEt), and methanol (MeOH), at room temperature, according to the scheme 1.

Antimalarial test: The in vitro antimalarial activity of crude extracts was evaluated by means of the Mark III test, as developed by the WHO.³ Plasmodium falciparum strain 3D7, sensitive to chloroquine was cultured in RPMI 1640 medium containing 25 mm HEPES and 6.8 m hipoxantin supplemented with 0.5% AlbuMax II at 37 °C and under atmosphere of 5% O2, 3-5% CO2, and N2. The crude extracts solutions (5mg/ml) were prepared by dissolution in DMSO or Ethanol followed by dilution in RPMI.

Scheme 1- Extraction methodology.

References:¹ WHO 2007, Facts sheet n°94; ² WHO 2002. WHO Traditional Medicine strategy 2002-2005. WHO, Geneva, Traditional medicine. 73 pp; 3 WHO/CTD/MAL/97 20 Rev 2, Geneva, WHO, 2001.